\( R \) is circumradii of \( \triangle A B C, H \) is orthocentre. \( R_{1}, R_{2}, R_{3} \) are circumradii of \( \triangle A H B, \triangle A H C, \triangle B H C \). If \( A H \) produced meet the circumradii of \( A B C \) at \( M \) and intersect \( B C \) at \( L \).
\[
\begin{array}{c}
\angle A H B=180^{\circ}-C \\
\frac{c}{\sin \left(180^{\circ}-C\right)}=2 R_{1} \\
\frac{c}{\sin C}=2 R_{1} \\
R_{1}=R
\end{array}
\]
Ratio of area of \( \triangle A H B \) to \( \triangle B M L \), is
(a) \( \cos B: 2 \cos A \)
(b) \( 2: 1 \)
(c) \( \cos A: \cos B \quad \cos C \)
(d) None of these
๐ฒPW App Link - https://bit.ly/YTAI_PWAP
๐PW Website - https://www.pw.live