Let \( A B C \) be an acute triangle with \( B C=a, C A=b \) and \( A B=c \), where \( a \neq b \neq c \). From any point ' \( p \) ' inside \( \triangle A B C \) let \( D, E, F \) denote foot of perpendiculars from ' \( P \) ' onto the sides \( B C, C A \)
\( \mathrm{P} \) and \( A B \), respectively. Now, answer the following questions.
W
Let \( A(7,0), B(4,4) \) and \( C(0,0) \) and \( \triangle D E F \) is isosceles with
\( D E=D F \). Then, the curve on which ' \( P \) ' may lie
(a) \( x=4 \) or \( x+y=7 \) or \( 4 x=3 y \)
(b) \( x=4 \) or \( x^{2}+y^{2}=4 x+4 y \)
(c) \( 3\left(x^{2}+y^{2}\right)+196=49(x+y) \)
(d) None of the above
๐ฒPW App Link - https://bit.ly/YTAI_PWAP
๐PW Website - https://www.pw.live