Regression Features and Labels - Practical Machine Learning Tutorial with Python p.3

Channel:
Subscribers:
1,410,000
Published on ● Video Link: https://www.youtube.com/watch?v=lN5jesocJjk



Category:
Tutorial
Duration: 10:17
654,635 views
4,858


We'll be using the numpy module to convert data to numpy arrays, which is what Scikit-learn wants. We will talk more on preprocessing and cross_validation when we get to them in the code, but preprocessing is the module used to do some cleaning/scaling of data prior to machine learning, and cross_ alidation is used in the testing stages. Finally, we're also importing the LinearRegression algorithm as well as svm from Scikit-learn, which we'll be using as our machine learning algorithms to demonstrate results.

At this point, we've got data that we think is useful. How does the actual machine learning thing work? With supervised learning, you have features and labels. The features are the descriptive attributes, and the label is what you're attempting to predict or forecast. Another common example with regression might be to try to predict the dollar value of an insurance policy premium for someone. The company may collect your age, past driving infractions, public criminal record, and your credit score for example. The company will use past customers, taking this data, and feeding in the amount of the "ideal premium" that they think should have been given to that customer, or they will use the one they actually used if they thought it was a profitable amount.

Thus, for training the machine learning classifier, the features are customer attributes, the label is the premium associated with those attributes.

https://pythonprogramming.net
https://twitter.com/sentdex
https://www.facebook.com/pythonprogramming.net/
https://plus.google.com/+sentdex




Other Videos By sentdex


2016-04-29Classification w/ K Nearest Neighbors Intro - Practical Machine Learning Tutorial with Python p.13
2016-04-26Testing Assumptions - Practical Machine Learning Tutorial with Python p.12
2016-04-23Programming R Squared - Practical Machine Learning Tutorial with Python p.11
2016-04-21R Squared Theory - Practical Machine Learning Tutorial with Python p.10
2016-04-18How to program the Best Fit Line - Practical Machine Learning Tutorial with Python p.9
2016-04-17How to program the Best Fit Slope - Practical Machine Learning Tutorial with Python p.8
2016-04-16Regression How it Works - Practical Machine Learning Tutorial with Python p.7
2016-04-14Pickling and Scaling - Practical Machine Learning Tutorial with Python p.6
2016-04-13Regression forecasting and predicting - Practical Machine Learning Tutorial with Python p.5
2016-04-12Regression Training and Testing - Practical Machine Learning Tutorial with Python p.4
2016-04-11Regression Features and Labels - Practical Machine Learning Tutorial with Python p.3
2016-04-10Regression Intro - Practical Machine Learning Tutorial with Python p.2
2016-04-10Practical Machine Learning Tutorial with Python Intro p.1
2016-03-16Building a Quadcopter p.5 - First flight and other Info
2016-03-14Building a Quadcopter p.4 - ESC Calibration with Hobbypower KK2.15
2016-03-11Building a Quadcopter p.3 - Assembly
2016-03-08Building a Quadcopter p.2 - Parts
2016-03-07Building a Quadcopter p.1 - Introduction
2016-03-04[See Description] Pipeline Tutorial - Python for Finance with Quantopian and Zipline 20
2016-03-02[See Description] Pipeline API Intro - Python for Finance with Quantopian and Zipline 19
2016-02-19SSL for HTTPS with Apache server - Flask web development with Python 35



Tags:
machine learning
python
tutorial
artificial intelligence
scikit-learn
theano
tensorflow
regression
linear regression
linear regression code
features
labels