Retentive Network: A Successor to Transformer for Large Language Models (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=ec56a8wmfRk



Duration: 28:25
95,343 views
2,446


#ai #retnet #transformers

Retention is an alternative to Attention in Transformers that can both be written in a parallel and in a recurrent fashion. This means the architecture achieves training parallelism while maintaining low-cost inference. Experiments in the paper look very promising.

OUTLINE:
0:00 - Intro
2:40 - The impossible triangle
6:55 - Parallel vs sequential
15:35 - Retention mechanism
21:00 - Chunkwise and multi-scale retention
24:10 - Comparison to other architectures
26:30 - Experimental evaluation

Paper: https://arxiv.org/abs/2307.08621

Abstract:
In this work, we propose Retentive Network (RetNet) as a foundation architecture for large language models, simultaneously achieving training parallelism, low-cost inference, and good performance. We theoretically derive the connection between recurrence and attention. Then we propose the retention mechanism for sequence modeling, which supports three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent. Specifically, the parallel representation allows for training parallelism. The recurrent representation enables low-cost O(1) inference, which improves decoding throughput, latency, and GPU memory without sacrificing performance. The chunkwise recurrent representation facilitates efficient long-sequence modeling with linear complexity, where each chunk is encoded parallelly while recurrently summarizing the chunks. Experimental results on language modeling show that RetNet achieves favorable scaling results, parallel training, low-cost deployment, and efficient inference. The intriguing properties make RetNet a strong successor to Transformer for large language models. Code will be available at this https URL.

Authors: Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, Furu Wei


Links:
Homepage: https://ykilcher.com
Merch: https://ykilcher.com/merch
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://ykilcher.com/discord
LinkedIn: https://www.linkedin.com/in/ykilcher

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2023-12-03Scalable Extraction of Training Data from (Production) Language Models (Paper Explained)
2023-12-03Just Chatting (OpenAssistant Goodbye Stream)
2023-11-25What is Q-Learning (back to basics)
2023-11-23Greg & Sam are BACK! (+ Q-Star is AGI) (Also Memes)
2023-11-19Is Sam Altman coming back? (OpenAI drama continues)
2023-11-18OpenAI just fired CEO Sam Altman
2023-11-08I built the most expensive CPU ever! (Every instruction is a prompt)
2023-10-24OpenAssistant is Completed
2023-10-14Efficient Streaming Language Models with Attention Sinks (Paper Explained)
2023-10-07Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution (Paper Explained)
2023-09-12Retentive Network: A Successor to Transformer for Large Language Models (Paper Explained)
2023-09-03Reinforced Self-Training (ReST) for Language Modeling (Paper Explained)
2023-08-15[ML News] LLaMA2 Released | LLMs for Robots | Multimodality on the Rise
2023-08-14How Cyber Criminals Are Using ChatGPT (w/ Sergey Shykevich)
2023-08-13Recipe AI suggests FATAL CHLORINE GAS Recipe
2023-08-12DeepFloyd IF - Pixel-Based Text-to-Image Diffusion (w/ Authors)
2023-06-20[ML News] GPT-4 solves MIT Exam with 100% ACCURACY | OpenLLaMA 13B released
2023-06-06Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust (Explained)
2023-06-02RWKV: Reinventing RNNs for the Transformer Era (Paper Explained)
2023-05-23Tree of Thoughts: Deliberate Problem Solving with Large Language Models (Full Paper Review)
2023-05-21OpenAI suggests AI licenses (US Senate hearing on AI regulation w/ Sam Altman)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
retnet
retention
linear attention
attention mechanism
retention transformers
rwkv
what is deep learning
deep learning tutorial
mit deep learning