Solve: \( y^{\prime}+\frac{3}{x} y=g(x) \), where \( g(x)=\left\{\begin{array}{l}1 \text { if } ...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=kP86WZDzuBw
Solve:
\( y^{\prime}+\frac{3}{x} y=g(x) \), where \( g(x)=\left\{\begin{array}{l}1 \text { if } 0 \leq x \leq 1 \\ \frac{1}{x} \text { if } x1\end{array}\right. \) and \( y\left(\frac{1}{2}\right)=\frac{1}{8} \), and \( y(x) \) is continuous on \( [0, \infty) \).
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live