Suppose four distinct positive numbers \( \mathrm{a}_{1}, \mathrm{a...
Suppose four distinct positive numbers \( \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4} \) are in G.P. Let \( \mathrm{b}_{1}=\mathrm{a}_{1}, \mathrm{~b}_{2}=\mathrm{b}_{1}+\mathrm{a}_{2}, \mathrm{~b}_{3}=\mathrm{b}_{2}+\mathrm{a}_{3} \) and \( \mathrm{b}_{4}=\mathrm{b}_{3}+\mathrm{a}_{4} \).
STATEMENT-1 : The numbers \( \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4} \) are neither in A.P. nor in G.P.
\( \mathrm{P} \) and
STATEMENT-2 : The numbers \( \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4} \) are in H.P.
W
(A) Statement-1 is True, Statement-2 is True; statement- 2 is a correct explanation for statement-1
(B) Statement-1 is True, Statement-2 is True; statement-2 is NOT a correct explanation for statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live