Tangents to the ellipse \( b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \) a...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=B8iajvqcn38
Tangents to the ellipse \( b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \) are perpendicular to each other. The locus of their point of intersection is
\( \mathrm{P} \)
(A) \( x^{2}+y^{2}=a^{2}+b^{2} \)
(B) \( x^{2}-y^{2}=a^{2}+b^{2} \)
(C) \( \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2} \)
(D) \( x^{2}-y^{2}=a^{2}-b^{2} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw