The condition that the line \( p=x \cos \alpha+y \sin \alpha \) bec...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=SXmtZQmlLQk
The condition that the line \( p=x \cos \alpha+y \sin \alpha \) becomes a tangent to \( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \) is
\( \mathrm{P} \)
(A) \( \mathrm{p}=\mathrm{a} \cos \alpha-\mathrm{b} \sin \alpha \)
(B) \( \mathrm{p}^{2}=\mathrm{a}^{2} \cos \alpha-\mathrm{b}^{2} \sin \alpha \)
(C) \( \mathrm{p}^{2}=\mathrm{a}^{2} \cos ^{2} \alpha+\mathrm{b}^{2} \sin ^{2} \alpha \) (D) \( \mathrm{p}^{2}=\mathrm{a}^{2} \cos ^{2} \alpha-\mathrm{b}^{2} \sin ^{2} \alpha \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw