The equation of one-dimensional motion of particle is described in column I. At \( t=0 \), parti....
The equation of one-dimensional motion of particle is described in column I. At \( t=0 \), particle
\( \mathrm{P} \)
is at origin and at rest. Match the column I with the statements in column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline\( (1) \) & \( x=\left(3 t^{2}\right) \mathrm{m} \) & (P) & \begin{tabular}{l}
velocity of particle at \\
\( t=1 \mathrm{~s} \) is \( 8 \mathrm{~m} / \mathrm{s} \)
\end{tabular} \\
\hline\( (2) \) & \( v=8 t \mathrm{~m} / \mathrm{s} \) & (Q) & \begin{tabular}{l}
particle moves with \\
uniform acceleration
\end{tabular} \\
\hline (3) & \( a=16 t \mathrm{~m} / \mathrm{s}^{2} \) & (R) & \begin{tabular}{l}
particle moves with \\
variable acceleration
\end{tabular} \\
\hline (4) & \( v=\left(6 t-3 \mathrm{t}^{2}\right) \mathrm{m} / \mathrm{s} \) & (S) & \begin{tabular}{l}
particle will change its \\
direction some time
\end{tabular} \\
\hline \multicolumn{2}{|c|}{2} \\
\hline
\end{tabular}
(A) \( \mathrm{Q} \quad \mathrm{P}, \mathrm{Q} \quad \mathrm{P}, \mathrm{R} \quad \mathrm{R}, \mathrm{S} \)
(B) \( \begin{array}{lllll}\mathrm{R} & \mathrm{P} & \mathrm{P}, \mathrm{R} & \mathrm{R}, \mathrm{S}\end{array} \)
(C) \( \begin{array}{llll}\mathrm{P} & \mathrm{Q} & \mathrm{P}, \mathrm{R} & \mathrm{R}, \mathrm{S}\end{array} \)
(D) \( \begin{array}{llll}\mathrm{R} & \mathrm{Q} & \mathrm{R}, \mathrm{S} & \mathrm{P}, \mathrm{Q}\end{array} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live