The equation \( \sin ^{4} x-2 \cos ^{2} x+a^{2}=0 \) is solvable if....
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=ejbfhfiDExs
The equation \( \sin ^{4} x-2 \cos ^{2} x+a^{2}=0 \) is solvable if
(1) \( \sqrt{3} \geq a \geq-\sqrt{3} \)
\( \mathrm{P} \)
(2) \( \sqrt{2} \geq a \geq-\sqrt{2} \)
W
(3) \( 1 \geq a \geq-1 \)
(4) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live