The function \( f(x)=m x \) satisfies \( f(x+y)=f(x)+f(y) \) and \( f(x)=a^{x} \) satisfies \( f....
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=3W3inhvDWac
The function \( f(x)=m x \) satisfies \( f(x+y)=f(x)+f(y) \) and \( f(x)=a^{x} \) satisfies \( f(x+y)=f(x) f(y) \). From the given functional relations, we can determine several things about the functions. At times the function can be determined uniquely from the functional equation.
If \( f(x+y)=f(x)+f(y) \) for all \( x, y \) and \( f(1)=1 \) then \( f(-9 / 8) \) is equal to
(1) \( 9 / 8 \)
(2) \( 8 / 9 \)
(3) \( -9 / 8 \)
(4) 1
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live