\begin{tabular}{|c|c|c|c|} \hline \multicolumn{2}{|r|}{ Column-I } & \multicolumn{2}{|c|}{ Colum....
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
A set contains 8 elements. \\
The number of subsets of \( \mathrm{A} \) is \\
equal to
\end{tabular} & (P) & 4 \\
\hline (B) & \begin{tabular}{l}
Let \( \mathrm{U}=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 8\} \) be \\
the universal set, \( \mathrm{N} \) being the \\
set of natural numbers. If \( \mathrm{A}=\{1 \), \\
\( 2,3,4\} \) and \( \mathrm{B}=\{2,4,6,8\} \). \\
Then what is the cardinality of \\
the complement of \( (\mathrm{A}-\mathrm{B}) \) ?
\end{tabular} & (Q) & 6 \\
\hline (C) & \begin{tabular}{l}
If \( n(A)=4, n(B)=4, n(A \cap B) \) \\
\( =2 \), then the area of shaded \\
portion is -
\end{tabular} & (R) & 256 \\
\hline (D) & \begin{tabular}{l}
In a group of 500 students, \\
there are 475 students who \\
can speak Hindi and 200 can \\
speak English. What is the \\
number of students who can \\
speak Hindi only?
\end{tabular} & (S) & 300 \\
\hline
\end{tabular}
\( \mathrm{P} \)
W
(1) A-P; B-Q; C-R; D-S
(2) A-R; B-Q; C-S; D-P
(3) A-R; B-Q; C-P; D-S
(4) A-Q; B-R; C-S; D-P
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live