The general solution of \( x \frac{d y}{d x}+\left(\log _{e} x\right) y=x^{1-\frac{1}{2} \log _{....
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=-oebvs3KYB8
The general solution of \( x \frac{d y}{d x}+\left(\log _{e} x\right) y=x^{1-\frac{1}{2} \log _{e} x} \)
\( \mathrm{P} \)
is equal to
(1) \( y=x^{1-\frac{1}{2} \log x}+C x^{-\frac{1}{2} \log x} \)
(2) \( y \cdot x^{\frac{1}{2} \log x}=x^{\frac{1}{2} \log x}+C \)
(3) \( y=e^{\frac{(\log x)^{2}}{2}}(x+C) \)
(4) \( y=e^{\frac{1}{2}(\log x)^{2}}\left(x^{1-\frac{1}{2}(\log x)}-x^{-\frac{1}{2}(\log x)}\right)+C \)
๐ฒPW App Link - https://bit.ly/YTAI_PWAP
๐PW Website - https://www.pw.live