If \( f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t \), then....
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=xVjsvUtzWbw
If \( f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t \), then
\( \mathrm{P} \)
(1) \( f\left(\frac{1}{x}\right)=\int_{1}^{x} \frac{\ln t}{(1+t) t} d t \)
(2) \( f\left(\frac{1}{x}\right)=\int_{1}^{x} \frac{t \ln t}{(1+t)} d t \)
(3) \( f(x)+f\left(\frac{1}{x}\right)=x \ln \left(\frac{x}{e}\right) \)
(4) \( f(x)+f\left(\frac{1}{x}\right)=\left(\ln x^{\frac{1}{\sqrt{2}}}\right)^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live