The locus of the point of intersection of the tangents \( \mathrm{P...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=xlD7ez4maAk
The locus of the point of intersection of the tangents
\( \mathrm{P}^{12 i} \) to \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \) at the ends whose eccentric angles
W differ by a right angle is
(1) \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{2} \)
(2) \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{4} \)
(3) \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 \)
(4) \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=3 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw