The eccentric angle of a point \( P \) lying in the first \( \mathr...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=Yc83rk660yw
The eccentric angle of a point \( P \) lying in the first
\( \mathrm{P}^{13} \) quadrant on the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \) is \( \theta \).
W
If \( O P \) makes an angle \( \phi \) with \( x \)-axis, then \( \theta-\phi \) will be maximum when \( \theta= \)
(1) \( \tan ^{-1} \sqrt{\frac{a}{b}} \)
(2) \( \tan ^{-1} \sqrt{\frac{b}{a}} \)
(3) \( \frac{\pi}{4} \)
(4) \( \frac{\pi}{3} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw