The maximum value of the term independent of ' \( t \) ' in the \( ...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=ot00gWYDAIw
The maximum value of the term independent of ' \( t \) ' in the
\( \mathrm{P} \) expansion of \( \left(t x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{10} \) where \( x \in(0,1) \) is:
W)
[JEE Main-2021 (February)]
(a) \( \frac{10 !}{\sqrt{3}(5 !)^{2}} \)
(b) \( \frac{2.10 \text { ! }}{3(5 !)^{2}} \)
(c) \( \frac{10 !}{3(5 !)^{2}} \)
(d) \( \frac{2 \cdot 10 !}{3 \sqrt{3}(5 !)^{2}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw