Let \( \mathrm{a}_{\mathrm{n}} \) denote the number of all n-digit ...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=m1LFoamX6BE
Let \( \mathrm{a}_{\mathrm{n}} \) denote the number of all n-digit positive integers formed by the digits 0,1 or both such that no
P consecutive digits in them are 0 . Let \( b_{n}= \) the number of
W such \( \mathrm{n} \)-digit integers ending with digit 1 and \( \mathrm{c}_{\mathrm{n}}= \) the number of such \( \mathrm{n} \)-digit integers ending with digit 0 .
Which of the following is correct? [IIT JEE 2012]
(A) \( \mathrm{a}_{17}=\mathrm{a}_{16}+\mathrm{a}_{15} \)
(B) \( \mathrm{c}_{17} \neq \mathrm{c}_{16}+\mathrm{c}_{15} \)
(C) \( b_{17} \neq b_{16}+c_{16} \)
(D) \( a_{17}=c_{17}+b_{16} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw