For integers \( n \) and \( r \), let \( \left(\begin{array}{l}n \\...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=6Ze5ccu-Esg
For integers \( n \) and \( r \), let \( \left(\begin{array}{l}n \\ r\end{array}\right)=\left\{\begin{array}{ll}{ }^{n} C_{r}, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right. \)
D
The maximum value of \( k \) for which the sum
\( \sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{\mathrm{K}+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right) \) exists, is equal to
Note: NTA has dropped this question in the final official answer key.
[JEE Main-2021 (February)]
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw