The position vector of the point of intersection of three planes r. \( \mathbf{n}_{1}=q_{1} \), ...

Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=3j_9hHMeA9U



Duration: 2:07
9 views
1


The position vector of the point of intersection of three planes r. \( \mathbf{n}_{1}=q_{1} \), r. \( \mathbf{n}_{2}=q_{2} \), r. \( \mathbf{n}_{3}=q_{3} \), where \( \mathbf{n}_{1}, \mathbf{n}_{2} \) and \( n_{3} \) are non-coplanar vectors, is
(a) \( \frac{1}{\left[\mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{3}\right]}\left[q_{3}\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)+q_{1}\left(\mathbf{n}_{2} \times \mathbf{n}_{3}\right)+q_{2}\left(\mathbf{n}_{3} \times \mathbf{n}_{1}\right)\right] \)
(b) \( \frac{1}{\left[n_{1} n_{2} n_{3}\right]}\left[q_{1}\left(n_{1} \times n_{2}\right)+q_{2}\left(n_{2} \times n_{3}\right)+q_{3}\left(n_{3} \times n_{1}\right)\right] \)
(c) \( -\frac{1}{\left[n_{3} \mathbf{n}_{1} \mathbf{n}_{2}\right]}\left[q_{1}\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)+q_{2}\left(\mathbf{n}_{2} \times \mathbf{n}_{3}\right)+q_{3}\left(\mathbf{n}_{3} \times \mathbf{n}_{1}\right)\right] \)
(d) None of the above
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2022-10-27If the lattice point \( P(x, y, z), x, y, z0 \) and \( x, y, z \in I \) with least value of \( z...
2022-10-27The position vectors of the four angular points of a tetrahedron \( O A B C \) are \( (0,0,0),(0...
2022-10-27For the circle \( x^{2}+y^{2}=r^{2} \), find the value of \( r \) for which the area enclosed by...
2022-10-27The points \( A(4,5,10), B(2,3,4) \) and \( C(1,2,-1) \) are three vertices of a parallelogram \...
2022-10-27If the line \( \frac{x}{1}=\frac{y}{2}=\frac{z}{3} \) intersects the line \( 3 \beta^{2} x+3(1-2...
2022-10-27Let \( P(a, b, c) \) be any point on the plane \( 3 x+2 y+z=7 \), then find the least value of \...
2022-10-27Through a point \( P(h, k, l) \) a plane is drawn at right angles to \( O P \) to meet the coord...
2022-10-27Equation of the line through the point \( (1,1,1) \) and intersecting the lines \( 2 x-y-z-2=0=x...
2022-10-27Find the direction cosines of the resultant of the vectors \( (\hat{\mathbf{i}}+\hat{\mathbf{j}}...
2022-10-27In a regular tetrahedron, if the distance between the mid-points of opposite edges is unity, its...
2022-10-27The position vector of the point of intersection of three planes r. \( \mathbf{n}_{1}=q_{1} \), ...
2022-10-27If \( \left|x_{1}\right|\left|y_{1}\right|+\left|z_{1}\right|,\left|y_{2}\right|\left|x_{2}\righ...
2022-10-27In the figure, a vectors \( x \) satisfies the equation \( x-w=v \). Then, \( x \) is equal to (...
2022-10-27Consider \( f, g \) and \( h \) be three real valued functions defined on \( R \). Let \( f(x)=\...
2022-10-27A variable plane cutting coordinate axes in \( A, B, C \) is at a constant distance from the ori...
2022-10-27Let \( f(x) \) and \( g(x) \) be two continuous functions defined from \( R \rightarrow R \), su...
2022-10-27Let \( L=\lim _{x \rightarrow \infty}\left(x \log x+2 x \cdot \log \sin \left(\frac{1}{\sqrt{x}}...
2022-10-27Number of critical points of the function, \( f(x)=\frac{2}{3} \sqrt{x^{3}}-\frac{x}{2}+\int_{1}...
2022-10-27If \( f: D \rightarrow R, f(x)=\frac{x^{2}+b x+c}{x^{2}+b_{1} x+c_{1}} \), where \( \alpha, \bet...
2022-10-27Match the column. (B) If the value of \( \lim _{x \rightarrow 0^{+}}\left(\frac{(3 / x)+1}{(3 / ...
2022-10-27If \( \{(\alpha+1)(\beta-1)+(\beta+1)(\alpha-1)\} a+(\alpha-1)(\beta-1)=0 \) and \( a(\alpha+1)(...



Tags:
pw