The solution of the equation \( \frac{x^{2} d^{2} y}{d x^{2}}=\ln x \), when \( x=1, y=0 \) and ....
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=IguhOjb8STI
The solution of the equation \( \frac{x^{2} d^{2} y}{d x^{2}}=\ln x \), when
\( \mathrm{P} \)
\( x=1, y=0 \) and \( \frac{d y}{d x}=-1 \) is
(1) \( \frac{1}{2}(\ln x)^{2}+\ln x \)
(2) \( \frac{1}{2}(\ln x)^{2}-\ln x \)
(3) \( -\frac{1}{2}(\ln x)^{2}+\ln x \)
(4) \( -\frac{1}{2}(\ln x)^{2}-\ln x \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live