The value of \[ \sin ^{2} \alpha+\sin ^{2}(\alpha+\beta)+\sin ^{2}(\alpha+2 \beta)+\ldots+\sin ^...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=MINV7jxiBR8
The value of
\[
\sin ^{2} \alpha+\sin ^{2}(\alpha+\beta)+\sin ^{2}(\alpha+2 \beta)+\ldots+\sin ^{2}(\alpha+(n-1) \beta)
\]
is equal to
(a) \( \frac{1}{2}\left[n+\frac{\sin n \beta}{\sin \beta} \cos \{2 \alpha+(n-1) \beta\}\right] \)
(b) \( \frac{1}{2}\left[n-\frac{\sin n \beta}{\sin \beta} \cos \{2 \alpha+(n-1) \beta\}\right] \)
(c) \( \left[n+\frac{\sin n \beta}{\sin \beta} \cos \{2 \alpha+(n-1) \beta\}\right] \)
(d) \( \left[n-\frac{\sin n \beta}{\sin \beta} \cos \{2 \alpha+(n-1) \beta\}\right] \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live