Van der Pol oscillator
In dynamics, the Van der Pol oscillator is a non-conservative oscillator with non-linear damping. It evolves in time according to the second-order differential equation:
d
2
x
d
t
2
−
μ
(
1
−
x
2
)
d
x
d
t
+
x
=
0
,
{\displaystyle {d^{2}x \over dt^{2}}-\mu (1-x^{2}){dx \over dt}+x=0,}
where x is the position coordinate—which is a function of the time t, and μ is a scalar parameter indicating the nonlinearity and the strength of the damping.
Source: https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
Created with WikipediaReaderReborn (c) WikipediaReader
Other Videos By WikiReader
2021-11-27 | 2015–16 Pepperdine Waves men's basketball team |
2021-11-27 | Jon Åge Tyldum |
2021-11-27 | Richard Sutcliffe |
2021-11-27 | Sampford Peverell |
2021-11-27 | Torra di Cantonu Grossu |
2021-11-27 | Pistol River |
2021-11-27 | Little Old Fashioned Karma |
2021-11-27 | SCHOKINAG-Schokolade-Industrie |
2021-11-27 | 1995 Copenhagen Open – Doubles |
2021-11-27 | U.P. Campus, Quezon City |
2021-11-27 | Van der Pol oscillator |
2021-11-27 | HIFK Hockey |
2021-11-27 | Spanish Flat, Napa County, California |
2021-11-27 | Hilbert algebra |
2021-11-27 | Madi Banja |
2021-11-27 | UFC 254 |
2021-11-27 | List of Kirsten Dunst performances |
2021-11-27 | Vanash-e Bala |
2021-11-27 | Jerod Turner |
2021-11-27 | Peter Skellerup |
2021-11-27 | USS Enterprise (CV-6) |