\( x^{5}+p x+r=0, x_{1}, x_{2}, x_{3}, x_{4} \) and \( x_{5} \) are the roots of the equation th...

Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=x9SlT99CojY



Duration: 6:17
0 views
0


\( x^{5}+p x+r=0, x_{1}, x_{2}, x_{3}, x_{4} \) and \( x_{5} \) are the roots of the equation then the value of \( \lim _{x \rightarrow x_{1}}\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)\left(x-x_{5}\right) \)
(a) \( 5 x_{1}^{4}-p \)
(b) \( -5 x_{1}^{4}+p \)
(c) \( -5 x_{1}^{4}-p \)
(d) \( 5 x_{1}^{4}+p \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-08Let \( a, b \) be constants such that \( \lim _{x \rightarrow 1} \frac{x^{2}+a x+b}{(\ln (2-x))^...
2023-06-08\( \lim _{x \rightarrow 1}\left(\sec \frac{\pi}{2^{x}}\right)(\ln x) \) is equal to (a) \( -\fra...
2023-06-08The value of \( \lim _{x \rightarrow 0} x^{2}\left[\frac{1}{x^{2}}\right] \) where [.] denotes G...
2023-06-08Let \( f(x)=\lim _{n \rightarrow \infty} \frac{\sin \left(\pi x^{4}\right)+(x+2)^{n} \cdot \frac...
2023-06-08\( \lim _{x \rightarrow 0}|x(x-1)|^{[\cos 2 x]} \), where \( [\cdot] \) denotes greatest integer...
2023-06-08\( \lim _{x \rightarrow \infty}\left(\sqrt{x^{4}-x^{2}+1}-a x^{2}-b\right)=0 \) then (a) \( a=1,...
2023-06-08\( \lim _{x \rightarrow 0}(x)^{\frac{1}{\ln \sin x}} \) is equal to (a) 1 (b) 0 (c) \( e \) (d) ...
2023-06-08\[ \lim _{x \rightarrow 0^{+}}\left(\ln \left(\sin ^{3} x\right)-\ln \left(x^{4}+e x^{3}\right)\...
2023-06-08Which of the following is/are true. (a) If \( \lim _{x \rightarrow a}\{f(x)+g(x)\} \) exists, th...
2023-06-08Evalute \( \lim _{x \rightarrow 0}\left[\frac{a \sin x}{x}\right]+\left[\frac{b \tan x}{x}\right...
2023-06-08\( x^{5}+p x+r=0, x_{1}, x_{2}, x_{3}, x_{4} \) and \( x_{5} \) are the roots of the equation th...
2023-06-08\[ \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \prod_{r=2}^{n}\left(\frac{r+1}{r-1}\right) \] (...
2023-06-08\[ \lim _{t \rightarrow \infty} \frac{\sqrt{2 t^{2}-t-1}-\sqrt{t^{2}-t+1}}{t(\tan \pi / 8)} \] (...
2023-06-08Evaluate \( \lim _{n \rightarrow \infty} \frac{[x]+[4 x]+[7 x]+\ldots+[(3 n-2) x]}{n^{2}} \) whe...
2023-06-08\( \lim _{x \rightarrow 0}\left[\frac{\left|\tan ^{-1}\right| x||}{x}\right] \) (where [.] denot...
2023-06-08If [.] is greatest integer function and \( n \) is a positive integer, then \( \lim _{x \rightar...
2023-06-08If \( \lim _{x \rightarrow 1} \frac{\frac{\pi}{4}-\tan ^{-1} x}{e^{\sin (\ln x)}-x^{n}} \) exist...
2023-06-08If \( \lim _{x \rightarrow 0}\left(p \tan q x^{2}-3 \cos ^{2} x+4\right)^{1 /\left(3 x^{2}\right...
2023-06-08\( \lim _{n \rightarrow \infty} \frac{n^{p} \sin ^{2}(n !)}{n+1}, 0p1 \), is equal to (a) 0 (b) ...
2023-06-08\[ \lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x^{2}} \] (a) 0.5 (b) 1 (c) 1.5 (d) Does not ...
2023-06-08If \( \lim _{x \rightarrow \infty}\left(\sqrt{x^{4}+a x^{3}+3 x^{2}+b x+2}\right. \) \( \left.-\...