A \( 2 \mathrm{~kg} \) block hangs without vibrating at the bottom ...
A \( 2 \mathrm{~kg} \) block hangs without vibrating at the bottom end of a spring with a force constant of \( 400 \mathrm{~N} / \mathrm{m} \). The top end of the spring is attached to the ceiling of an elevator car. The car is rising with an upward acceleration of \( 5 \mathrm{~m} / \mathrm{s}^{2} \) when the acceleration suddenly ceases at time \( t=0 \) and
\( \mathrm{P} \) the car moves upward with constant speed \( \left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right) \)
W
What is the angular frequency of oscillation of the block after the acceleration ceases?
(a) \( 10 \sqrt{2} \mathrm{rad} / \mathrm{s} \)
(b) \( 20 \mathrm{rad} / \mathrm{s} \)
(c) \( 20 \sqrt{2} \mathrm{rad} / \mathrm{s} \)
(d) \( 32 \mathrm{rad} / \mathrm{s} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live