A charged particle (electron or proton) is introduced at the origin \( (x=0, y=0, z=0) \) with a...
A charged particle (electron or proton) is introduced at the origin \( (x=0, y=0, z=0) \) with a given initial velocity \( \vec{v} \). A uniform electric field \( \vec{E} \) and a uniform magnetic field \( \vec{B} \) exist everywhere. The velocity \( \vec{v} \), electric field \( \vec{E} \) and magnetic field \( \vec{B} \) are given in columns I, II and III, respectively. The quantities \( E_{0} \) and \( B_{0} \) are positive in magnitude.
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ Column I } & & Column II & \multicolumn{1}{|c|}{ Column III } \\
\hline (I) & Electron with \( \vec{v}=2 \frac{E_{0}}{B_{0}} \hat{x} \) & (i) & \( \vec{E}=E_{0} \hat{z} \) & (P) & \( \vec{B}=-B_{0} \hat{x} \) \\
\hline (II) & Electron with \( \vec{v}=\frac{E_{0}}{B_{0}} \hat{y} \) & (ii) & \( \vec{E}=-E_{0} \hat{y} \) & (Q) & \( \vec{B}=B_{0} \hat{x} \) \\
\hline (III) & Proton with \( \vec{v}=0 \) & (iii) & \( \vec{E}=-E_{0} \hat{x} \) & (R) & \( \vec{B}=B_{0} \hat{y} \) \\
\hline (IV) & Proton with \( \vec{v}=2 \frac{E_{0}}{B_{0}} \hat{x} \) & (iv) & \( \vec{E}=E_{0} \hat{x} \) & (S) & \( \vec{B}=B_{0} \hat{z} \) \\
\hline
\end{tabular}
In which case would the particle move in a straight line along the negative direction of \( y \)-axis (i.e., move along \( -\hat{y} \) )?
(1) (III) (ii) (P)
(2) (III) (ii) (R)
(3) (IV) (ii) (S)
(4) (II) (iii) (Q)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live