Magnetic force on a charged particle is given by \( \vec{F}_{m}=q(\vec{v} \times \vec{B}) \) and...
Magnetic force on a charged particle is given by \( \vec{F}_{m}=q(\vec{v} \times \vec{B}) \) and electrostatic force \( \vec{F}_{e}=q \vec{E} \). A particle having charge \( q=1 C \) and mass \( 1 \mathrm{~kg} \) is released from rest at origin. There are electric and magnetic fields given by \( \vec{E}=(10 \hat{i}) \mathrm{N} / \mathrm{C} \) for \( x=1.8 \mathrm{~m} \) and \( \vec{B}=-(5 \hat{k}) \mathrm{T} \) for \( 1.8 \mathrm{~m} \leq x \leq 2.4 \mathrm{~m} \).
A screen is placed parallel to \( y-z \) plane at \( x=3 \mathrm{~m} \). Neglect gravity forces.
- The speed with which the particle will collide the screen is
(1) \( 3 \mathrm{~m} \mathrm{~s}^{-1} \)
(2) \( 6 \mathrm{~m} / \mathrm{s}^{-1} \)
(3) \( 9 \mathrm{~m} / \mathrm{s}^{-1} \)
(4) \( 12 \mathrm{~m} / \mathrm{s}^{-1} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live