A charged particle passes through a region that could have electric field only or magnetic field...
A charged particle passes through a region that could have electric field only or magnetic field only or both electric and magnetic fields or none of the fields. Match the column-I with column-II.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline A. & \( \begin{array}{l}\text { Kinetic energy of } \\
\text { the particle remains } \\
\text { constant. }\end{array} \) & p. & \( \begin{array}{l}\text { Under special conditions, } \\
\text { this is possible when both } \\
\text { electric and magnetic } \\
\text { fields are present. }\end{array} \) \\
\hline B. & \( \begin{array}{l}\text { Acceleration of the } \\
\text { particle is zero. }\end{array} \) & q. & \( \begin{array}{l}\text { The region has electric } \\
\text { field only. }\end{array} \) \\
\hline C. & \( \begin{array}{l}\text { Kinetic energy of the } \\
\text { particle changes and it } \\
\text { also suffers deflection. }\end{array} \) & r. & \( \begin{array}{l}\text { The region has magnetic } \\
\text { field only. }\end{array} \) \\
\hline D. & \( \begin{array}{l}\text { Kinetic energy of the } \\
\text { particle changes but it } \\
\text { suffers no deflection. }\end{array} \) & s. & \( \begin{array}{l}\text { The region contains no } \\
\text { field. }\end{array} \) \\
\hline
\end{tabular}
(1) A-(p,r,s); B-(p,q); C-(p,r,s); D-(p,q)
(2) A-(p,r,s); B-(p,r,s); C-(p,q); D-(p,q)
(3) A-(p,q); B-(p,q); C-(p,r,s); D-(p,r,s)
(4) A-(p,q); B-(p,r,s); C-(p,q); D-(p,r,s)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live