A conducting rod \( A C \) of length \( 4 l \) is rotated about a point \( O \) in a uniform mag....
A conducting rod \( A C \) of length \( 4 l \) is rotated about a
\( \mathrm{P} \)
point \( O \) in a uniform magnetic field \( \vec{B} \) directed into the paper. \( A O=l \) and \( O C=3 l \). Then
W
\begin{tabular}{ccccccc}
\( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) \\
\( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{O} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{B} \) & \( \mathrm{x} \) \\
\( \mathrm{x} \) & \( \mathrm{A} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{C} \) \\
\( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \) & \( \mathrm{x} \)
\end{tabular}
(1) \( V_{A}-V_{O}=\frac{B \omega l^{2}}{2} \)
(3) \( V_{A}-V_{C}=4 B \omega l^{2} \)
(2) \( \quad V_{O}-V_{C}=\frac{7}{2} B \omega l^{2} \)
(4) \( V_{C}-V_{O}=\frac{9}{2} B \omega l^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live