A disc of radius \( R \) is rolling without slipping with an angular acceleration \( \alpha \), ...
A disc of radius \( R \) is rolling without slipping with an angular acceleration \( \alpha \), on a horizontal plane. Four points are marked at the end of horizontal and vertical diameter of a circle of radius \( r(R) \) on the disc. If horizontal and vertical direction are chosen as \( x \) and \( y \) axis as shown in the figure, then acceleration of points 1,2,3 and 4 are \( \vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3} \) and \( \vec{a}_{4} \) respectively, at the moment when angular velocity of the disc is \( \omega \). Match the following
(1) \( \mathrm{i}-\mathrm{b} \), ii \( -\mathrm{a} \), iii \( -\mathrm{c}, \mathrm{iv}-\mathrm{c} \)
(2) i \( -b \), ii \( -c \), iii \( -a, i v-d \)
(3) i \( - \) d, ii \( -b \), iii \( - \) a, iv \( -c \)
(4) \( \mathrm{i}-\mathrm{c}, \mathrm{ii}-\mathrm{a} \), iii \( -\mathrm{d}, \mathrm{iv}-\mathrm{b} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live