A function \( f(\mathrm{x}) \) is defined as \( f(\mathrm{x})=\frac...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=uhtSzelJ3Vo
A function \( f(\mathrm{x}) \) is defined as \( f(\mathrm{x})=\frac{\mathrm{A} \sin \mathrm{x}+\sin 2 \mathrm{x}}{\mathrm{x}^{3}},(\mathrm{x} \neq 0) \). If the function is continuous at \( \mathrm{x}=0 \), then -
(A) \( \mathrm{A}=-2 \)
(B) \( f(0)=-1 \)
(C) \( \mathrm{A}=1 \)
(D) \( f(0)=1 \)
\( \mathrm{P} \)
\( \mathrm{W} \)
đ˛PW App Link - https://bit.ly/YTAI_PWAP
đPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw