A line \( L_{1} \) passing through a point with position vector \( \mathbf{p}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \) and parallel \( \mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \), Another line \( L_{2} \)
\( \mathrm{P} \) passing through a point with position vector \( =2 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k} \)
W and parallel to \( \mathbf{b}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k} \).
Equation of a line passing through the point \( (2,-3,2) \) and equally inclined to the line \( L_{1} \) and \( L_{2} \) may be equal to
(a) \( \frac{x-2}{2}=\frac{y-3}{-1}=\frac{z-2}{1} \)
(b) \( \frac{x-2}{-2}=y+3=z-2 \)
(c) \( \frac{x-2}{-4}=\frac{y+3}{3}=\frac{z-5}{2} \)
(d) \( \frac{x+2}{4}=\frac{y+3}{3}=\frac{z-2}{-5} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live