A particle is moving with speed \( v=2 t^{2} \) on the circumference of circle of radius \( R \)...
A particle is moving with speed \( v=2 t^{2} \) on the circumference of circle of radius \( R \). Match the quantities given in column-I with corresponding results in column-II
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline A. & \( \begin{array}{l}\text { Magnitude of tangential } \\
\text { acceleration of particle }\end{array} \) & p. & \( \begin{array}{l}\text { Decreases with } \\
\text { time. }\end{array} \) \\
\hline B. & \( \begin{array}{l}\text { Magnitude of Centripetal } \\
\text { acceleration of particle }\end{array} \) & q. & \( \begin{array}{l}\text { Increases with } \\
\text { time }\end{array} \) \\
\hline C. & \( \begin{array}{l}\text { Magnitude of angular } \\
\text { speed of particle with } \\
\text { respect to centre of circle }\end{array} \) & r. & \( \begin{array}{l}\text { Remains } \\
\text { constant }\end{array} \) \\
\hline D. & \( \begin{array}{l}\text { Angle between the total } \\
\text { acceleration vector and } \\
\text { centripetal acceleration } \\
\text { vector of particle }\end{array} \) & s. & \( \begin{array}{l}\text { Depends on the } \\
\text { value of radius } \\
R\end{array} \) \\
\hline
\end{tabular}
(a) A-(q,r); B-(q,s); C-(q,s); D-(p)
(b) A-(q,r); B-(q,p); C-(q); D-(p,s)
(c) \( \mathrm{A}-(\mathrm{q}) ; \mathrm{B}-(\mathrm{q}, \mathrm{s}) ; \mathrm{C}-(\mathrm{q}, \mathrm{s}) \); D-(p,s)
(d) A-(s); B-(q,s); C-(q,p); D-(p,r)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live