A particle moves in a circle of radius \( 20 \mathrm{~cm} \). Its linear speed is given by \( v=...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=BiNb8gwibxo
A particle moves in a circle of radius \( 20 \mathrm{~cm} \). Its linear speed is given by \( v=2 t \) where \( t \) is in seconds and \( v \) in \( \mathrm{m} \mathrm{s}^{-1} \).
\( \mathrm{P} \) Then
\( \mathrm{W} \)
(1) The radial acceleration at \( t=2 \mathrm{~s} \) is \( 80 \mathrm{~m} \mathrm{~s}^{-2} \).
(2) Tangential acceleration at \( t=2 \mathrm{~s} \) is \( 2 \mathrm{~m} \mathrm{~s}^{-2} \).
(3) Net acceleration at \( t=2 \mathrm{~s} \) is greater than \( 80 \mathrm{~m} \mathrm{~s}^{-2} \).
(4) Tangential acceleration remains constant in magnitude.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live