Let \( n \) be a positive integer. Let \[ A=\sum_{k=0}^{n}(-1)^{k} ...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=9_p9qklO0k0
Let \( n \) be a positive integer. Let
\[
A=\sum_{k=0}^{n}(-1)^{k} n_{C_{k}}\left[\left(\frac{1}{2}\right)^{k}+\left(\frac{3}{4}\right)^{k}+\left(\frac{7}{8}\right)^{k}+\left(\frac{15}{16}\right)^{k}+\left(\frac{31}{32}\right)^{k}\right]
\]
\( \mathrm{P} \)
WV
If \( 63 A=1-\frac{1}{2^{30}} \), then \( n \) is equal to
[JEE Main-2021 (March)]
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw