Let \( { }^{n} C_{r} \) denote the binomial coefficient of \( x^{r}...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=GoeBr7rNHpg
Let \( { }^{n} C_{r} \) denote the binomial coefficient of \( x^{r} \) in the expansion of \( (1+x)^{n} \).
\( \mathrm{P} \)
W)
If \( \sum_{k=0}^{10}\left(2^{2}+2 k\right)^{n} C_{k}=\alpha \cdot 3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in \mathrm{R} \), then \( \alpha+\beta \) is equal to
[JEEMain-2021 (March \( )] \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw