A sphere is rolling without slipping on a fixed horizontal plane su...
A sphere is rolling without slipping on a fixed horizontal plane surface. In the figure, \( \mathrm{A} \) is the point of contact, \( \mathrm{B} \) is the centre of the sphere and \( \mathrm{C} \) is its topmost point. Then,
\( \mathrm{P} \)
(A) \( \vec{v}_{\mathrm{C}}-\overrightarrow{\mathrm{v}}_{\mathrm{A}}=2\left(\overrightarrow{\mathrm{v}}_{\mathrm{B}}-\overrightarrow{\mathrm{v}}_{\mathrm{C}}\right) \)
(B) \( \vec{V}_{\mathrm{C}}-\overrightarrow{\mathrm{V}}_{\mathrm{B}}=\overrightarrow{\mathrm{v}}_{\mathrm{B}}-\overrightarrow{\mathrm{v}}_{\mathrm{A}} \)
(C) \( \left|\vec{v}_{\mathrm{C}}-\vec{v}_{\mathrm{A}}\right|=2\left|\vec{v}_{\mathrm{B}}-\vec{v}_{\mathrm{C}}\right| \)
(D) \( \left|\vec{v}_{\mathrm{C}}-\overrightarrow{\mathrm{v}}_{\mathrm{A}}\right|=4\left|\overrightarrow{\mathrm{v}}_{\mathrm{B}}\right| \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live