Adiabatic modulus of elasticity of a gas is \( 2.1 \times 10^{5} \m...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=8WJeATp6IVE
Adiabatic modulus of elasticity of a gas is \( 2.1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \).
What will be its isothermal modulus of elasticity \( \left(\frac{C_{p}}{C_{v}}=1.4\right) \)
\( \mathrm{P} \)
[UPSEAT 1999]
W
(a) \( 1.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \)
(b) \( 1.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \)
(c) \( 1.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \)
(d) \( 1.2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw