A standing wave exists in a string of length \( 150 \mathrm{~cm} \) fixed at both ends. The disp... VIDEO
A standing wave exists in a string of length \( 150 \mathrm{~cm} \) fixed at both ends. The displacement amplitude of a point at a distance of \( 10 \mathrm{~cm} \) from one of the ends if \( 5 \sqrt{3} \mathrm{~mm} \). The distance between two nearest points, within the same loop having the same displacement amplitude of \( 5 \sqrt{3} \) is \( 10 \mathrm{~nm} \).
At what maximum distance from one end, is the potential energy of the string zero :
(A) \( 10 \sqrt{3} \mathrm{~cm} \)
(B) \( 15 \mathrm{~cm} \)
(C) \( 20 \mathrm{~cm} \)
(D) \( 30 \mathrm{~cm} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2022-10-27 The value of \( \lim _{n \rightarrow \infty} \frac{1 \cdot n+2 \cdot(n-1)+3 \cdot(n-2)+\ldots+n ... 2022-10-27 If \( \lim _{x \rightarrow 0}\left(1+a x+b x^{2}\right)^{2 / x}=e^{3} \), the values of \( a \) ... 2022-10-27 The value of \( \lim _{x \rightarrow 4} \frac{(\cos \alpha)^{x}-(\sin \alpha)^{x}-\cos 2 \alpha}... 2022-10-27 The value of \( \lim _{x \rightarrow \infty}\left(\sqrt{a^{2} x^{2}+a x+1}-\sqrt{a^{2} x^{2}+1}\... 2022-10-27 The value of \( \lim _{x \rightarrow 0} \frac{p^{x}-q^{x}}{r^{x}-s^{x}} \) is
(a) \( \frac{1-\lo... 2022-10-27 If \( \lim _{x \rightarrow 0}\left(x^{-3} \sin 3 x+a x^{-2}+b\right) \) exists and is equal to z... 2022-10-27 The value of \( \lim _{x \rightarrow \pi} \frac{\sqrt{2+\cos x}-1}{(\pi-x)^{2}} \) is
(a) \( \fr... 2022-10-27 The value of \( \lim _{n \rightarrow \infty} \frac{a^{n}+b^{n}}{a^{n}-b^{n}} \), (where \( \left... 2022-10-27 \( A \) draws a card from a pack of \( n \) cards marked \( 1,2, \ldots, n \). The card is repla... 2022-10-27 The value of \( \lim _{x \rightarrow a} \frac{x \sin a-a \sin x}{x-a} \) is
(a) a \( \sin a-\cos... 2022-10-27 A standing wave exists in a string of length \( 150 \mathrm{~cm} \) fixed at both ends. The disp... 2022-10-27 The value of \( \lim _{n \rightarrow \infty} \frac{1^{3}+2^{3}+3^{3}+\ldots+n^{3}}{\left(n^{2}+1... 2022-10-27 If \( (1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}, n \in N \), then \( C_{0}-C_{1}+C_... 2022-10-27 The value of \( \lim _{x \rightarrow 0} \frac{x \cos x-\log (1+x)}{x^{2}} \) is
(a) 1
(b) \( \fr... 2022-10-27 The value of \( \lim _{x \rightarrow a} \frac{\cos x-\cos a}{\cot x-\cot a} \) is
(a) \( -\sin ^... 2022-10-27 The value of \( \lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x^{2}} \) is
(a) \( \frac{3}{2} ... 2022-10-27 The contrapositive of \( (p \vee q) \rightarrow r \) is
(1) \( r \rightarrow(p \vee q) \)
(2) \(... 2022-10-27 Largest real value for \( x \) such that \( \sum_{k=0}^{4}\left(\frac{3^{4-k}}{(4-k) !}\right)\l... 2022-10-27 Let \( \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\ln \sqrt{\frac{1+x}{1-x}} \), then find \( x \). 2022-10-27 The probability that in a family of five members, exactly two members have birthday on Sunday is... 2022-10-27 If \( x \) is positive, the first negative term in the expansion of \( (1+x)^{27 / 5} \) is \( (...