The value of \( \lim _{x \rightarrow 4} \frac{(\cos \alpha)^{x}-(\sin \alpha)^{x}-\cos 2 \alpha}...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=FP_02NQxNCM
The value of \( \lim _{x \rightarrow 4} \frac{(\cos \alpha)^{x}-(\sin \alpha)^{x}-\cos 2 \alpha}{x-4}, \alpha \in\left(0, \frac{\pi}{2}\right) \) is
(a) \( \log (\cos \alpha)+(\sin \alpha)^{4} \log (\sin \alpha) \)
(b) \( \left(\cos ^{4} \alpha\right) \log (\cos \alpha)-(\sin \alpha)^{4} \log (\sin \alpha) \)
(c) \( \left(\cos ^{4} \alpha\right) \log (\cos \alpha) \)
(d) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw