All-optical machine learning using diffractive deep neural networks | TDLS

Published on ● Video Link: https://www.youtube.com/watch?v=64vebcBGiUU



Duration: 1:00:05
6,466 views
109


Toronto Deep Learning Series, 10 September 2018

For slides and more information, visit https://tdls.a-i.science/events/2018-09-10/

Paper Review: http://innovate.ee.ucla.edu/wp-content/uploads/2018/07/2018-optical-ml-neural-network.pdf

Speaker: https://www.linkedin.com/in/russell-pollari-b555895a/
Organizer: https://www.linkedin.com/in/amirfz/

Host: Rangle.io

Paper abstract:
Deep learning has been transforming our ability to execute advanced inference tasks using computers. We introduce a physical mechanism to perform machine learning by demonstrating an all-optical Diffractive Deep Neural Network (D2NN) architecture that can implement various functions following the deep learning-based design of passive diffractive layers that work collectively. We create 3D-printed D2NNs that implement classification of images of handwritten digits and fashion products as well as the function of an imaging lens at terahertz spectrum. Our all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can implement, and will find applications in all-optical image analysis, feature detection and object classification, also enabling new camera designs and optical components that perform unique tasks using D2NNs.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2018-11-16PGGAN | Progressive Growing of GANs for Improved Quality, Stability, and Variation (part 1) | AISC
2018-11-16(Original Paper) Latent Dirichlet Allocation (discussions) | AISC Foundational
2018-11-15(Original Paper) Latent Dirichlet Allocation (algorithm) | AISC Foundational
2018-10-31[Transformer] Attention Is All You Need | AISC Foundational
2018-10-25[Original attention] Neural Machine Translation by Jointly Learning to Align and Translate | AISC
2018-10-16[StackGAN++] Realistic Image Synthesis with Stacked Generative Adversarial Networks | AISC
2018-10-11Bayesian Deep Learning on a Quantum Computer | TDLS Author Speaking
2018-10-02Prediction of Cardiac arrest from physiological signals in the pediatric ICU | TDLS Author Speaking
2018-09-24Junction Tree Variational Autoencoder for Molecular Graph Generation | TDLS
2018-09-19Reconstructing quantum states with generative models | TDLS Author Speaking
2018-09-13All-optical machine learning using diffractive deep neural networks | TDLS
2018-09-05Recurrent Models of Visual Attention | TDLS
2018-08-28Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates | TDLS
2018-08-20TDLS: Large-Scale Unsupervised Deep Representation Learning for Brain Structure
2018-08-14Principles of Riemannian Geometry in Neural Networks | TDLS
2018-08-07Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond | TDLS
2018-07-30Program Language Translation Using a Grammar-Driven Tree-to-Tree Model | TDLS
2018-07-23Explainable Neural Networks based on Additive Index Models | TDLS
2018-07-18TMLS2018 - Machine Learning in Production, Panel Discussion
2018-07-16Flexible Neural Representation for Physics Prediction | AISC Trending Paper
2018-07-10Connectionist Temporal Classification, Labelling Unsegmented Sequence Data with RNN | TDLS



Tags:
neural net
optics
optical neural networks
quantum machine learning
diffractive deep neural networks
deep learning