Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond | TDLS

Published on ● Video Link: https://www.youtube.com/watch?v=i29ckCz1XTw



Duration: 1:00:38
11,751 views
97


Toronto Deep Learning Series, 7 August 2018

For slides and more information, visit https://tdls.a-i.science/events/2018-08-07/

Paper Review: https://arxiv.org/abs/1602.06023

Speaker: https://www.linkedin.com/in/ehsanamjadian/
Organizer: https://www.linkedin.com/in/amirfz/

Host: PWC

Paper abstract:
In this work, we model abstractive text summarization using Attentional Encoder-Decoder Recurrent Neural Networks, and show that they achieve state-of-the-art performance on two different corpora. We propose several novel models that address critical problems in summarization that are not adequately modeled by the basic architecture, such as modeling key-words, capturing the hierarchy of sentence-to-word structure, and emitting words that are rare or unseen at training time. Our work shows that many of our proposed models contribute to further improvement in performance. We also propose a new dataset consisting of multi-sentence summaries, and establish performance benchmarks for further research.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2018-10-16[StackGAN++] Realistic Image Synthesis with Stacked Generative Adversarial Networks | AISC
2018-10-11Bayesian Deep Learning on a Quantum Computer | TDLS Author Speaking
2018-10-02Prediction of Cardiac arrest from physiological signals in the pediatric ICU | TDLS Author Speaking
2018-09-24Junction Tree Variational Autoencoder for Molecular Graph Generation | TDLS
2018-09-19Reconstructing quantum states with generative models | TDLS Author Speaking
2018-09-13All-optical machine learning using diffractive deep neural networks | TDLS
2018-09-05Recurrent Models of Visual Attention | TDLS
2018-08-28Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates | TDLS
2018-08-20TDLS: Large-Scale Unsupervised Deep Representation Learning for Brain Structure
2018-08-14Principles of Riemannian Geometry in Neural Networks | TDLS
2018-08-07Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond | TDLS
2018-07-30Program Language Translation Using a Grammar-Driven Tree-to-Tree Model | TDLS
2018-07-23Explainable Neural Networks based on Additive Index Models | TDLS
2018-07-18TMLS2018 - Machine Learning in Production, Panel Discussion
2018-07-16Flexible Neural Representation for Physics Prediction | AISC Trending Paper
2018-07-10Connectionist Temporal Classification, Labelling Unsegmented Sequence Data with RNN | TDLS
2018-06-25Learning to Represent Programs with Graphs | TDLS
2018-06-19Quantum generative adversarial networks | TDLS Author Speaking
2018-06-12[SAGAN] Self-Attention Generative Adversarial Networks | TDLS
2018-06-05[ELMo] Deep Contextualized Word Representations | AISC
2018-05-23Few-Shot Learning Through an Information Retrieval Lens | TDLS



Tags:
deep learning
nlp
text summarization
rnn
sequence models
sequence to sequence