Bayesian Deep Learning on a Quantum Computer | TDLS Author Speaking

Published on ● Video Link: https://www.youtube.com/watch?v=bx5gJwD29p8



Duration: 1:19:30
1,273 views
32


Toronto Deep Learning Series, 9 October 2018

For slides and more information, visit https://tdls.a-i.science/events/2018-10-09/

Paper Review: https://arxiv.org/abs/1806.11463

Speaker: Peter Wittek (University of Toronto, Perimeter Institute, Vector Institute, Creative Destruction Lab)

Host: Zero Gravity Labs (ZGL)
Date: Oct 9th, 2018

Bayesian Deep Learning on a Quantum Computer

Bayesian methods in machine learning, such as Gaussian processes, have great advantages compared to other techniques. In particular, they provide estimates of the uncertainty associated with a prediction. Extending the Bayesian approach to deep architectures has remained a major challenge. Recent results connected deep feedforward neural networks with Gaussian processes, allowing training without backpropagation. This connection enables us to leverage a quantum algorithm designed for Gaussian processes and develop a new algorithm for Bayesian deep learning on quantum computers. The properties of the kernel matrix in the Gaussian process ensure the efficient execution of the core component of the protocol, quantum matrix inversion, providing an at least polynomial speedup over the classical algorithm. Furthermore, we demonstrate the execution of the algorithm on contemporary quantum computers and analyze its robustness with respect to realistic noise models.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2018-11-27[BERT] Pretranied Deep Bidirectional Transformers for Language Understanding (algorithm) | TDLS
2018-11-27Neural Image Caption Generation with Visual Attention (algorithm) | AISC
2018-11-27Neural Image Caption Generation with Visual Attention (discussion) | AISC
2018-11-17PGGAN | Progressive Growing of GANs for Improved Quality, Stability, and Variation (part 2) | AISC
2018-11-16PGGAN | Progressive Growing of GANs for Improved Quality, Stability, and Variation (part 1) | AISC
2018-11-16(Original Paper) Latent Dirichlet Allocation (discussions) | AISC Foundational
2018-11-15(Original Paper) Latent Dirichlet Allocation (algorithm) | AISC Foundational
2018-10-31[Transformer] Attention Is All You Need | AISC Foundational
2018-10-25[Original attention] Neural Machine Translation by Jointly Learning to Align and Translate | AISC
2018-10-16[StackGAN++] Realistic Image Synthesis with Stacked Generative Adversarial Networks | AISC
2018-10-11Bayesian Deep Learning on a Quantum Computer | TDLS Author Speaking
2018-10-02Prediction of Cardiac arrest from physiological signals in the pediatric ICU | TDLS Author Speaking
2018-09-24Junction Tree Variational Autoencoder for Molecular Graph Generation | TDLS
2018-09-19Reconstructing quantum states with generative models | TDLS Author Speaking
2018-09-13All-optical machine learning using diffractive deep neural networks | TDLS
2018-09-05Recurrent Models of Visual Attention | TDLS
2018-08-28Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates | TDLS
2018-08-20TDLS: Large-Scale Unsupervised Deep Representation Learning for Brain Structure
2018-08-14Principles of Riemannian Geometry in Neural Networks | TDLS
2018-08-07Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond | TDLS
2018-07-30Program Language Translation Using a Grammar-Driven Tree-to-Tree Model | TDLS



Tags:
Deep Learning
Bayesian Statistics
Quantum Computing
Science & Technology
Artificial Intelligence
quantum machine learning
quantum computer
bayesian deep learning