\( \alpha, \beta, \gamma \) are parametric angles of three points \( P, Q \) and \( R \) respectively, on the circle \( x^{2}+y^{2}=1 \). \( A \) is the point \( (-1,0) \). If \( \alpha, \beta, \gamma \) are in A.P. and \( A P, A Q, A R \) are in G.P. then
(a) \( \cos (\alpha / 2), \cos (\beta / 2), \cos (\gamma / 2) \) are in A.P.
(b) \( \cos (\alpha / 2), \cos (\beta / 2), \cos (\gamma / 2) \) are in G.P.
(c) \( \sin (\alpha / 2), \sin (\beta / 2), \sin (\gamma / 2) \) are in A.P.
(d) \( \sin (\alpha / 2), \sin (\beta / 2), \sin (\gamma / 2) \) are in G.P.
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live