AQC 2016 - Roadmap for Building a Quantum Computer

Subscribers:
348,000
Published on ● Video Link: https://www.youtube.com/watch?v=kgMWommXxU8



Duration: 26:56
6,211 views
71


A Google TechTalk, June 28, 2016, presented by John Martinis (Google)
ABSTRACT: I will overview the basic strategy and roadmap for the quantum-AI project at Google, which has the goal of building a useful quantum computer. For hardware, the key metric is building scalable qubits with 2-qubit gate errors below 0.1-0.2% [J.M.Martinis, NPJQI 1, 15005 (2015)].

For software, I will describe a new "quantum-supremacy" test that can demonstrate the exponential power of a quantum processor by checking its output with a classical computer, which is intractable for even the world's most advanced classical supercomputer beyond 42-50 qubits. We are working to perform this experiment in the next 2 years.

Presented at the Adiabatic Quantum Computing Conference, June 26-29, 2016, at Google's Los Angeles office.




Other Videos By Google TechTalks


2016-10-20AQC 2016 - Adiabatic Quantum Computer vs. Diffusion Monte Carlo
2016-10-20AQC 2016 - Floquet Quantum Annealing with Superconducting Circuit
2016-10-20AQC 2016 - Simulated Annealing Comparison Between All-to-All Connectivity Schemes
2016-10-20AQC 2016 - Parity Adiabatic Quantum Computing
2016-10-20AQC 2016 - Towards Quantum Supremacy with Pre-Fault-Tolerant Devices
2016-10-20AQC 2016 - Scaling Analysis & Instantons for Thermally-Assisted Tunneling and Quantum MC Simulations
2016-10-20AQC 2016 - The Quantum Spin Glass Transition on the Regular Random Graph
2016-10-20AQC 2016 - A Fully-Programmable Measurement-Feedback OPO Ising Machine with All-to-All Connectivity
2016-10-20AQC 2016 - Origin and Suppression of 1/f Magnetic Flux Noise
2016-10-20AQC 2016 - Building Quantum Annealer v2.0
2016-10-20AQC 2016 - Roadmap for Building a Quantum Computer
2016-10-20AQC 2016 - Driving Spin Systems with Noisy Control Fields: Limits to Adiabatic Protocol
2016-10-20AQC 2016 - An Optimal Stopping Approach for Benchmarking Probabilistic Optimizers
2016-10-20AQC 2016 - Quantum Annealing via Environment-Mediated Quantum Diffusion
2016-10-20AQC 2016 - Inhomogeneous Quasi-adiabatic Driving of Quantum Critical Dynamics
2016-10-20AQC 2016 - Quantum Monte Carlo vs Tunneling vs. Adiabatic Optimization
2016-10-20AQC 2016 - Simulated Quantum Annealing Can Be Exponentially Faster Than Classical
2016-10-20AQC 2016 - Quantum Monte Carlo Simulations and Quantum Annealing
2016-10-20AQC - 2016 Quantum vs. Classical Optimization - A Status Report on the Arms Race
2016-10-20AQC 2016 - What is the Computational Value of Finite Range Tunneling?
2016-10-20AQC 2016 - Opening Remarks: Why We Believe Quantum Annealing Will Succeed



Tags:
google techtalk
quantum computing