AQC 2016 - Towards Quantum Supremacy with Pre-Fault-Tolerant Devices

Subscribers:
349,000
Published on ● Video Link: https://www.youtube.com/watch?v=2mgKW0MmgBk



Duration: 23:52
853 views
8


A Google TechTalk, June 28, 2016, presented by Sergio Boixo (Google)
ABSTRACT: A critical question for the field of quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of state-of-the-art classical computers, achieving so-called quantum supremacy. We study the task of sampling from the output distributions of random quantum circuits, a natural task for benchmarking quantum computers. Crucially this requires a direct numerical simulation to solve classically, with computational time and space cost exponential in the size of Hilbert space. This requirement is typical of chaotic systems.

We study the convergence to the chaotic regime using extensive supercomputer simulations, modeling circuits with up to 42 qubits - the largest quantum circuits simulated to date for a computational task that approaches quantum supremacy.

We show that while chaotic states are extremely sensitive to errors, quantum supremacy can be achieved in the near-term with approximately fifty superconducting qubits. We extend previous results to argue that performing this task with a fault tolerant quantum computer would have strong implications in computational complexity theory. We introduce cross entropy as a useful benchmark of quantum circuits which approximates the circuit fidelity. We show that the cross entropy can be efficiently measured when circuit simulations are available. Beyond the classically tractable regime, the cross entropy can be extrapolated and compared with theoretical estimates of circuit fidelity to define a practical quantum supremacy test.

Presented at the Adiabatic Quantum Computing Conference, June 26-29, 2016, at Google's Los Angeles office.




Other Videos By Google TechTalks


2016-11-10Simulating the Quantum World on a Classical Computer
2016-10-20AQC 2016 - Coupled Quantum Fluctuations and Quantum Annealing
2016-10-20AQC 2016 - Max-k-SAT, Multi-Body Frustration, & Multi-Body Sampling on a Two Local Ising System
2016-10-20AQC 2016 - Boosting Quantum Annealer Performance via Quantum Persistence
2016-10-20AQC 2016 - Avoiding Negative Sign Problem in Simulation of Quantum Annealilng
2016-10-20AQC2016 - Classical Modeling of Quantum Tunneling
2016-10-20AQC 2016 - Adiabatic Quantum Computer vs. Diffusion Monte Carlo
2016-10-20AQC 2016 - Floquet Quantum Annealing with Superconducting Circuit
2016-10-20AQC 2016 - Simulated Annealing Comparison Between All-to-All Connectivity Schemes
2016-10-20AQC 2016 - Parity Adiabatic Quantum Computing
2016-10-20AQC 2016 - Towards Quantum Supremacy with Pre-Fault-Tolerant Devices
2016-10-20AQC 2016 - Scaling Analysis & Instantons for Thermally-Assisted Tunneling and Quantum MC Simulations
2016-10-20AQC 2016 - The Quantum Spin Glass Transition on the Regular Random Graph
2016-10-20AQC 2016 - A Fully-Programmable Measurement-Feedback OPO Ising Machine with All-to-All Connectivity
2016-10-20AQC 2016 - Origin and Suppression of 1/f Magnetic Flux Noise
2016-10-20AQC 2016 - Building Quantum Annealer v2.0
2016-10-20AQC 2016 - Roadmap for Building a Quantum Computer
2016-10-20AQC 2016 - Driving Spin Systems with Noisy Control Fields: Limits to Adiabatic Protocol
2016-10-20AQC 2016 - An Optimal Stopping Approach for Benchmarking Probabilistic Optimizers
2016-10-20AQC 2016 - Quantum Annealing via Environment-Mediated Quantum Diffusion
2016-10-20AQC 2016 - Inhomogeneous Quasi-adiabatic Driving of Quantum Critical Dynamics



Tags:
google techtalk
quantum computing