\( \arg (\bar{z})+\arg (-z)=\left\{\begin{array}{ll}\pi, & \text { ...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=jCk6wv8Jqsg
\( \arg (\bar{z})+\arg (-z)=\left\{\begin{array}{ll}\pi, & \text { if } \arg (z)0 \\ -\pi, & \text { if } \arg (z)0\end{array}\right. \), where
P \( -\pi\arg (z) \leq \pi \).
W
If \( \arg (z)0 \), then \( \arg (-z)-\arg (z) \) is equal to
(a) \( -\pi \)
(b) \( -\frac{\pi}{2} \)
(c) \( \frac{\pi}{2} \)
(d) \( \pi \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw