Automated Vulnerability Detection in Source Code Using Deep Learning (discussions) | AISC

Published on ● Video Link: https://www.youtube.com/watch?v=TvZCT-qHU4Q



Category:
Discussion
Duration: 21:29
732 views
7


Toronto Deep Learning Series, 3 December 2018

Paper: https://arxiv.org/abs/1807.04320

Speaker: Alex Hesammohseni & Angshuman Ghosh (Loblaw Digital)

Host: Loblaw Digital
Date: Dec 3rd, 2018

Automated Vulnerability Detection in Source Code Using Deep Representation Learning

Increasing numbers of software vulnerabilities are discovered every year whether they are reported publicly or discovered internally in proprietary code. These vulnerabilities can pose serious risk of exploit and result in system compromise, information leaks, or denial of service. We leveraged the wealth of C and C++ open-source code available to develop a large-scale function-level vulnerability detection system using machine learning. To supplement existing labeled vulnerability datasets, we compiled a vast dataset of millions of open-source functions and labeled it with carefully-selected findings from three different static analyzers that indicate potential exploits. The labeled dataset is available at: this https URL. Using these datasets, we developed a fast and scalable vulnerability detection tool based on deep feature representation learning that directly interprets lexed source code. We evaluated our tool on code from both real software packages and the NIST SATE IV benchmark dataset. Our results demonstrate that deep feature representation learning on source code is a promising approach for automated software vulnerability detection.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2019-02-04Neural Ordinary Differential Equations - part 2 (results & discussion) | AISC
2019-02-04Parallel Collaborative Filtering for the Netflix Prize (algorithm review) | AISC Foundational
2019-02-04Parallel Collaborative Filtering for the Netflix Prize (results & discussion) AISC Foundational
2019-01-14TDLS - Announcing Fast Track Stream
2019-01-09Extracting Biologically Relevant Latent Space from Cancer Transcriptomes \w VAEs(discussions) I AISC
2019-01-09Extracting Biologically Relevant Latent Space from Cancer Transcriptomes \w VAEs (algorithm) | AISC
2019-01-08[original backprop paper] Learning representations by back-propagating errors (part1) | AISC
2019-01-08[original backprop paper] Learning representations by back-propagating errors (part2) | AISC
2018-12-16Automated Deep Learning: Joint Neural Architecture and Hyperparameter Search (discussions) | AISC
2018-12-16Automated Deep Learning: Joint Neural Architecture and Hyperparameter Search (algorithm) | AISC
2018-12-09Automated Vulnerability Detection in Source Code Using Deep Learning (discussions) | AISC
2018-12-09Automated Vulnerability Detection in Source Code Using Deep Learning (algorithm) | AISC
2018-12-05[DQN] Human-level control through deep reinforcement learning (discussions) | AISC Foundational
2018-12-05Deep Q-Learning paper explained: Human-level control through deep reinforcement learning (algorithm)
2018-12-03SMOTE, Synthetic Minority Over-sampling Technique (discussions) | AISC Foundational
2018-12-02TDLS - Classics: SMOTE, Synthetic Minority Over-sampling Technique (algorithm)
2018-11-30Visualizing Data using t-SNE (algorithm) | AISC Foundational
2018-11-30Visualizing Data using t-SNE (discussions) | AISC Foundational
2018-11-27[BERT] Pretranied Deep Bidirectional Transformers for Language Understanding (discussions) | TDLS
2018-11-27[BERT] Pretranied Deep Bidirectional Transformers for Language Understanding (algorithm) | TDLS
2018-11-27Neural Image Caption Generation with Visual Attention (algorithm) | AISC



Tags:
deep learning
source code
Vulnerability Detection