[DQN] Human-level control through deep reinforcement learning (discussions) | AISC Foundational

Published on ● Video Link: https://www.youtube.com/watch?v=ugjjjtuVshY



Category:
Discussion
Duration: 27:31
662 views
6


Toronto Deep Learning Series, 29 November 2018

Paper: https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

Speaker: Nicolai Pogrebnyakov

Host: WeCloudData
Date: Nov 29th, 2018

Human-level control through deep reinforcement learning

The theory ofreinforcementlearning provides a normative account deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games,using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions,resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2019-02-04Parallel Collaborative Filtering for the Netflix Prize (results & discussion) AISC Foundational
2019-01-14TDLS - Announcing Fast Track Stream
2019-01-09Extracting Biologically Relevant Latent Space from Cancer Transcriptomes \w VAEs(discussions) I AISC
2019-01-09Extracting Biologically Relevant Latent Space from Cancer Transcriptomes \w VAEs (algorithm) | AISC
2019-01-08[original backprop paper] Learning representations by back-propagating errors (part1) | AISC
2019-01-08[original backprop paper] Learning representations by back-propagating errors (part2) | AISC
2018-12-16Automated Deep Learning: Joint Neural Architecture and Hyperparameter Search (discussions) | AISC
2018-12-16Automated Deep Learning: Joint Neural Architecture and Hyperparameter Search (algorithm) | AISC
2018-12-09Automated Vulnerability Detection in Source Code Using Deep Learning (discussions) | AISC
2018-12-09Automated Vulnerability Detection in Source Code Using Deep Learning (algorithm) | AISC
2018-12-05[DQN] Human-level control through deep reinforcement learning (discussions) | AISC Foundational
2018-12-05Deep Q-Learning paper explained: Human-level control through deep reinforcement learning (algorithm)
2018-12-03SMOTE, Synthetic Minority Over-sampling Technique (discussions) | AISC Foundational
2018-12-02TDLS - Classics: SMOTE, Synthetic Minority Over-sampling Technique (algorithm)
2018-11-30Visualizing Data using t-SNE (algorithm) | AISC Foundational
2018-11-30Visualizing Data using t-SNE (discussions) | AISC Foundational
2018-11-27[BERT] Pretranied Deep Bidirectional Transformers for Language Understanding (discussions) | TDLS
2018-11-27[BERT] Pretranied Deep Bidirectional Transformers for Language Understanding (algorithm) | TDLS
2018-11-27Neural Image Caption Generation with Visual Attention (algorithm) | AISC
2018-11-27Neural Image Caption Generation with Visual Attention (discussion) | AISC
2018-11-17PGGAN | Progressive Growing of GANs for Improved Quality, Stability, and Variation (part 2) | AISC



Tags:
reinforcement learning neural network
reinforcement learning
DQN
Deep Q LEarning
Q learning