Azure MLops- Model Deployment II- Session III, part 3 VIDEO
Deployment scenarios
ML frameworks
ONNX & model interoperability
Container orchestration
Kubernetes
Cluster isolation patterns
Deployment environment
Release pipeline
Logging and monitoring the model
Model re-training
Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE 2022-03-28 Mathematics of Deep Learning: Convnets- Session 9 2022-03-28 Mathematics of Deep Learning: Why convolutions, sobel & scharr filters Session 8 2022-03-28 Mathematics of Deep Learning: 2D convolutions, pooling, dilated convolutions - Session 7 2022-03-28 Mathematics of Deep Learning: Convolutions- Session 6 2022-03-28 Mathematics of Deep Learning: Linear Algebra IV: loss functions - Session 5 2022-03-28 Mathematics of Deep Learning: Linear Algebra III: non-linearities - Session 4 2022-03-28 Mathematics of Deep Learning: Linear Algebra I: tensors, matrices, dot product - Session 2 2022-03-28 Mathematics of Deep Learning: Linear Algebra II: matrices and eigendecomposition - Session 3 2022-03-28 Mathematics of Deep Learning: Introduction- Pytorch and linear algebra - Session 1 2022-03-28 Mathematics of Deep Learning: Chain Rule, Backpropagation & Autograd - Session 13 2022-03-28 Azure MLops- Model Deployment II- Session III, part 3 2022-03-28 Azure MLops- Model Deployment- Session III, part 2 2022-03-28 Azure MLops- ML Pipelines- Session III, part 1 2022-03-28 Azure MLops- MLops Flow- Session III, part 4 2022-03-28 Azure MLops- MLPipeline_MNIST Hands-on- Session II, part 5 2022-03-28 Azure MLops- Experiment Reproducibility Hands-on III- Session II, part 4 2022-03-28 Azure MLops- Experiment Reproducibility Hands-on II- Session II, part 3 2022-03-28 Azure MLops- Experiment Reproducibility Hands-on I- Session II, part 2 2021-09-21 MLOps: Packaging Overview, Session 1, part 5 2021-09-21 MLOps: Introduction/Overview, Session 1, part 1 2021-09-21 MLOps: MLflow Hands On, Session 2, part 2